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New superfields for N supersymmetry with central charges 
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Australia 

Received 28 January 1985 

Abstract. We show that a judicious choice of nonlinear realisation of centrally extended 
N supersymmetry permits the construction of chiral-like superfields with a 2N-dimensional 
a-number parameter, at the expense of an external ‘superspin’ index which labels multiplets 
of several irreducible representations of the Lorentz group. The generalised superfields 
considered here have 4N+[N’Z1 component fields altogether, as opposed to the 16N expected 
conventionally. The N = 2 case is examined in detail, and the decomposition of arbitrary 
spin superfields into irreducible parts is given. The connection with other N = 2 superfield 
analyses is pointed out, and the structure of ‘spin-reducing’ representations with p 2  + 1ZI2 = 0 
is exhibited. 

1. Introduction and main results 

This paper is a contribution to the study of N-extended supersymmetry in superspace. 
Although the ultimate goals (see below) of the superfield programme are the construc- 
tion of realistic interacting models with a view to their quantum behaviour (using 
superspace techniques to handle the inevitable ‘miraculous’ cancellations between 
bosonic and fermionic channels), we remain here at the non-interacting level. Specifi- 
cally, we introduce new representations which generalise, to the case of N-extended 
supersymmetry with unrestricted central changes, the notion of chiral superfields-a 
step which general arguments from the usual superfield framework would indicate as 
problematical (see below). To the extent that a puralistic attack is needed on unresolved 
questions of the ‘holy grails’ of maximally extended N = 4 super Yang-Mills and N = 8 
supergravity models (see, for example, van Nieuwenhuizen 1981 and Milewski 
1983a,b), the present work and extensions of it may find application alongside 
other approaches. Thus, although rapid progress has been made recently in component 
formalisms at the classical level (see, for example, Duff et a1 1984), comprehensive 
results with the quantised models will require full local and covariant superspace 
techniques. The complexities of the latter have engendered such modifications as N 
supersymmetry in an N = 1-‘component superfield’ basis (Fayet 1976, 1979, Gates 
1981, Milewski 1983a, b), or light-cone formalisms (Mandelstam 1982, Brink et a1 
1983a, b, Namazie et a1 1983, Taylor 1983), both of which necessitate some sacrifice 
(auxiliary field content, and manifest Lorentz invariance and locality, respectively). 
There are indications based on counting arguments that beyond N = 2  the full N 
superspace is intrinsically inadequate to represent physical multiplets (Rivelles and 
Taylor 198 1, Rocek and Siege1 1981), unless particular ‘spin-reducing’ representations 
are used (Fayet 1976, 1979, Sohnius 1978, Rands and Taylor 1983a, b). These emerge 
naturally in the present work (see below). 

0305-4470/85/142701+ 18$02.25 0 1985 The Institute of Physics 2701 
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The method of nonlinear realisations is conventionally applied to N supersymmetry 
by considering functions on coset spaces ( Z  XO(3,l)  x K) @T4,,,/0(3, 1) xK,  where 
O(3, 1) is the Lorentz group, K is an internal symmetry group (a subgroup of Sp(2N)), 
T4/4N is the nilpotent algebra of translations and supertranslations, and Z x  denotes 
the Abelian central charges (see, for example, Salam and Strathdee 1978, Wess and 
Bagger 1982, Gates et al 1983). One then has superfields @ti, )q)(xF,  e“, e,,, . . . ), 
functions of spinor parameters transforming as (1, 0) x { 1) + (0,;) x { 1) under O(3, 1) x 
K, plus the usual Minkowski-space coordinates xcI, and some additional bosonic central 
charge coordinates; the superfields possess external O(3, 1) x K transformation proper- 
ties in some representation ( p ,  q )  x {A}. 

These superfields and their corresponding physical states have been analysed 
recently (Sokatchev 1975, 1981, Rittenberg and Sokatchev 1981, Siege1 and Gates 1981, 
Ferrara et a1 1981, Ferrara and Savoy 1982, Taylor 1980, Pickup and Taylor 1981, 
Lopuszahski and Wolf 1982, Kim 1984). Superfield expansions in the 4 N  Grassmann 
coordinates involve 24N = 16, components, and a satisfactory analysis requires the 
use of the maximal automorphism symmetry of the algebra (Sp(2N) in the absence 
of central charges). The superfield differential realisations are in fact irreducible only 
with respect to an enlarged superalgebra containing generators (so-called ‘covariant 
derivatives’) which anticommute with the supertranslations. Labelling operators, 
including Casimir invariants, and corresponding projectors on the irreducible super- 
fields can thus be constructed in terms of these. A useful set of projectors corresponds 
to the ‘chiral’ case where a superfield is constrained to have a vanishing covariant 
derivative, and consequently can be solved in terms of a function only of x” +i8ap8, 
and say ea,, thereby having only 22N = 4, components. However, since central charges 
arise from the anticommutation of covariant derivatives, care must be exercised lest 
on-shell conditions (e.g. p 2  = 0 = lZI*) already be applied as constraints (see especially 
Lindgren 1982, Restuccia and Taylor 1983). 

The approach expounded here differs in two fundamental respects from the conven- 
tional procedure. Firstly, the central charges are realised as multiplicative, complex 
parameters rather than extra coordinates. Secondly, the superfields are functions of 
Grassmann parameters of only a particular chirality but take their values in a graded 
representation space of a superalgebra. Thus superfields are functions on the coset 
space (2 xO(3, 1) x K) @ T ~ / ~ N / ( Z  xO(3, 1) x K) @ T O I Z N ,  where TO/*, is the super- 
algebra of supertranslations of a particularly chirality. These superfields are functions 
of only 2 N Grassmann coordinates but possess external ‘superspin’ corresponding to 
representations of the graded Lorentz group (2 xO(3 , l )  X K) @ TOIZN (cf Ivanov and 
Sorin 1980). As we shall see below, these include 22[N’21 = 4[N/21 irreducible representa- 
tions of the Lorentz group, giving a total of 4N+rN/21 components. 

The N-extended PoincarC supersymmetry algebra, %, with K = SO( N )  and ;N(  N - 
1) complex central charges, Zu, where i,j = 1, .  . . , N, is 

[J,, PPI = i(77ypp, - VPPP”) 
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Here P,, and .Ipu generate the PoincarC group and Q,, and Qd1 are the supertranslation 
generators. q k  are the SO(N)  generators with Hermitian representation ( fJk)'' and 
structure constant CF;,. The metric is 7," = (-, +, +, +) and all other (anti)commu- 
tators are zero. 

Induced representations of 3 are obtained here, by taking superspace as the coset 
space, G/H,  where G is the SO( N)-extended super-Poincar6 group with corresponding 
superalgebra 3, H is a subgroup of G with corresponding superalgebra X =  
{.I,,,, QU, TJ, Z,,}. This coset space can be parameterised as exp[i(xpP,, + p'Qu,)]  with 
coordinates (x,, e"'), where xw(e"') is a c - ( a - )  number parameter). Representations 
of 3 are afforded by superfields Qa(xp, p ' )  which are functions on G / H  taking their 
values in a representation space, V, of 2. 

Obtaining representations of Ce in this manner presumes that the representations of 
X are known. Since X is also a superalgebra an analogous procedure to the above is 
followed. Firstly, we note that with respect to the positive, negative and zero roots of 
SO(N)  the generators ZJ and QaI may be written in bases TJ = { T:, T i ,  TO,} and 
Qal = { Q:,, Qpn, Qs} respectively, where n = 1, . . . , [ ;NI ,  a = 1, . . . , ['NI['( N - l)] 
and only exists for N odd, for which [ T', To] c T', [ T+, T-]  c To,  { Q', Q-} c 2, 
[ T*, Q'] c Q* and all other (anti)commutators involving these generators are zero. 
To implement the inducing construction on X, a subgroup, H', of H is chosen with 
corresponding superalgebra X' = {JPm T:, 7$ Q:,,, Qo, Z,,}. It is possible to decom- 
pose X' as =%,+Xi,  where X:={T:, Q:,,, Qs} is an ideal. Representations of Xh 
are then extended to X by taking them to be zero on 2;. The coset space, H/H', is 
parameterised as exp[i(y"T; + O""Qp,)] with coordinates (y", 6"") and respresentations 
of X are afforded by superfields 'U,(y", O m " )  which are functions on this coset space 
taking their values in a representation space of X'. By considering the group action 
on the coset representatives a differential representation of the generators of X can 
be obtained and their action on superfields examined to determine the finite- 
dimensional, irreducible representations of 2. 

Since an expansion of 'U&", 0"') in 8"" yields 22[N/2' component fields, while an 
expansion of QA(xw, e"') in 6"' yields 22N-component fields, each of which carries a 
representation of X, there are a total of 4N+[N/21 component fields. There may be, 
however, fewer than this if the representation of X carried by Y E  is reducible. 

The problem of determining irreducible representations of 3 must now be 
addressed. In the conventional procedure, discussed earlier, the algebra 3 is extended 
to include covariant derivatives which, together with the generators of 3, provide a 
basis in superspace for the enveloping algebra, under which the superfields are still 
invariant. Since the superfields provide a representation space for the extended algebra 
they are expected to be reducible under Ce. A similar situation exists in the present case. 

The differential form of the spinorial generators is 
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where Z i  and @, are matrix representations of the corresponding generator. Remem- 
bering that Z,, is totally antisymmetric, ( 2 )  and (3 )  tell us that a basis for the enveloping 
algebra in superspace is provided by extending the superalgebra to include a new set 
of generators, sa, =a/aJa ' .  It is noted, however, that the complete set of differential 
operators, a/aJ"', is not required for this basis if N is odd. This becomes apparent if 
one regards the second term on the right of (2) as a set of N linear equations in the 
variables 6' with coefficients 2;. Since 2: is a totally antisymmetric N x N matrix it 
will have zero determinant for odd N, and consequently the equations will be linearly 
dependent. Thus, for N odd, at least one of the generators, SUI, can be regarded as 
being constructed from linear combinations of the other generators. This extended 
algebra is denoted by g. The generators sa, are, however, significantly different to 
the covariant derivatives of the conventional procedure in that they do not anticommute 
with Gal and Qa, and thus cannot be used to generate irreducible representations of 
g from irreducible representations of '$9. 

For the present purposes of analysing superfields into irreducible representations 
of supersymmetry, we eschew delving into the details of Casimir invariants and 
projection operators (cf Sokatchev 1975, Rittenberg and Sokatchev 198 1,  Taylor 1980, 
Pickup and Taylor 1981, Siege1 and Gates 1981, Kim 1984) in favour of a treatment 
based upon the recognition of highest (and lowest) weight components (cf Kac 1978, 
Farmer and Jarvis 1984) and explicit construction of the invariant subspaces therefrom. 
First, it is noted that sat and Gal may be cast in bases sa, = {s:,,, si,,, so,} and 
Gal = {&, G;,,, Go,} with similar properties to Qi,, and Q Z .  From the discussion of 
the previous paragraph we note that it is possible to regard as a linear combination 
of the other generators of g and thus it is not an independent generator. Consequently 
in the following work it will not be counted in the explicit construction of states. 

Irreducible representations of 3 are obtained from an inducing construction by 
choosing a subalgebra, X, of 3 where X = {s:,,, Q:", Q:,,, 08, T:, TH, Z,,, Jwv} and 
states, A, which are irreducible representations of the little algebra Xo = { TE, JGy) Z,,} 
and which satisfy s:,,A = &A = Q:,,A = QZA = T:A = 0. This last requirement is 
justified from the fact that X+ = {s:,,, G:", Q:,,, QZ, T:} is an ideal of X. A basis for 
an irreducible representation of '$9, of states which are representations of X, is obtained 
by acting with monomials of Bin,  08 and Q;,, on A. A similar basis, for irreducible 
representations of g, is obtained by acting with monomials of G i n ,  08, on,, and si,, 
on A. Thus, a superfield will possess 2*["*] irreducible multiplets of 3 each of which 
contains 22N irreducible multiplets of Xo, giving a total of 4Nc[N'21 component fields 
as required by the superfield analysis. Unlike the conventional case, where the irreduc- 
ible multiplets of '$9 are invariant under the covariant derivatives, the sue will mix these 
representations. 

This programme is carried out in detail in 0 2 below for S0(2)-extended Poincari 
supersymmetry. The general superfield expansion is given in ( l l ) ,  and the highest 
weight in terms of the above discussion is F,; there is an analogous lowest weight f-. 
The irreducible superfields constructed from these appear as invariant subspaces, and 
the remaining irreducible superfields are realised as factor spaces of the general 
superfield. A slightly more convenient basis for these spaces emerges from the analysis 
(see tables 2 and 3 ) ;  the component form of the supertranslation action is given in 
table 4 for the F+ multiplet. Appendices 1 and 2 provide technical details of the matrix- 
and projector-formalism for the arbitrary spin superfields, and the B calculus, required 
for Q 2. 
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It has been observed (Fayet 1976, 1979, Sohnius 1978, Rands and Taylor 1983a, b) 
that for the special cases p 2 +  (21’ = 0 a constraint can be imposed on the supertranslation 
generators effecting a drastic reduction in dimension. In our treatment p 2  + 1212 = 0 is 
an atypicality condition under which otherwise irreducible superfields become 
indecomposable; on each factor space the constraint is implemented modulo coset 
elements. In the N = 2 case (see Q 2 for details) there are four irreducible factors each 
with four components. 

As mentioned above, it is via these so-called ‘spin-reducing’ cases (which will 
become p 2  = 1ZI2 = 0 on shell) that one hopes to avoid the ‘component explosion’, and 
give a full off-shell formalism for N = 3 supersymmetry (for the results of a different 
implementation of this approach, see Davis et al 1984). As far as the present work is 
concerned, we observe that bilinear invariants may always be written down (at least 
in component form) which in fact serve as definitions of the contragrediently-trans- 
forming superfield ; presumably a corresponding projector formalism could be found 
(Taylor 1980, Pickup and Taylor 1981, Bufton and Taylor 1983, Kim 1984). However, 
in practice such projections are implemented via gauge freedoms and other constraints 
so there is little to be gained in the absence of these and without interactions. In this 
connection the possibility of a geometrical framework for the present superfield 
realisations also raises interesting questions. 

2. N = 2 extended supersymmetry with central charge 

The SO(2) graded extension of the Poincare algebra, 92, is obtained by taking, in 
addition to the generators of the PoincarC algebra, P, and I,, the generator for SO(2) 
transformations, T, and the Majorana spinor charges Qua and Qda, where 1 s a, d. s 2 
and a = +, -. In its most general form the algebra may also include a central charge, 
2. In the Weyl representation these generators satisfy the following graded Lie algebra: 

where E - +  = - E + -  = +1 and all other (anti)commutators are zero. The metric is taken 

Following the procedure discussed in 0 1 the subalgebra, 2, is taken to be 2= 
{J,, T, Z, Qua} with little group X,, = X. The cosets %/ 2 are labelled by the elements 
exp[i(x”P, + e”aOda)] and the superfields are defined as functions, QA(x l r ,  e”a), taking 
their values in a representation space of Xo. 

as 77,” = (-, +, +, +). 
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Irreducible representations of 2 can be constructed by considering states 1 ) 
carrying labels ( p ,  q )  ~ { t }  of O(3, 1) xU(1)  and such that Qa+/ ) = 0. The set 

( p ,  q )  -+) x{t - 1}+ (p, q )  x { t  -2}] under O ( 3 , l )  x U( 1). We find that this does in fact 
constitute an irreducible representation of X. 

The generators of 3 can be realised as differential operators in the coset space 
%/2 and as matrix representatives in the representation space of KO. Their explicit 
form is 

{ I  ), Q a - l  ), Qa-Qp- l  )} will then decompose as [ ( p ,  9 )  x { t } + ( p ,  q + t )  X { t - l } +  

P, = -id, 

J~~ =i(v,,xpa, - ~,,xPa,)+ieBQ(a,,)a"a,, - J O , ,  

where a,, =alae"" ,  a, = a/axw and Jog,,, Zo, and QoQQ are the matrix representations 
of the 'little superalgebra' which determines the external transformation rules of the 
superfield. Suitable forms for Zo and are 

(7) 

- TS,' 0 
-( T -  l)n:,P' 

0 -( T - l)rI,,P' 
-( T - 2 ) 6 k  

Spin p * f  and spin q * $  projectors are denoted by II;' and II;' respectively (see 
appendix 1 for details). J t u  may be expressed in terms of these projectors; however, 
an explicit form is not required for the following analysis. The algebra satisfied by 3 
requires matrices Qoaa which satisfy { QO,,, Q o p b }  = ~ ~ E , ~ E , & O .  These are found to be 
of the form 

0 

0 0  0 
0 

0 0  0 0 

( 9 )  

- 
where p = f i  and y = (1 + i ) J 2  has been chosen simply to render the most symmetrical 
form for Q",. The only essential requirement for these coefficients is that their product 
is 4iZ. 



New superjields for N supersymmetry 2707 

The superfields Q A ( x ” ,  p a )  form a representation of X labelled by { ( p ,  q ) ,  1; 2): 

/ V”(X” ,  80”) \ 

The general form of the superfield when expanded in e”” is (spin-q indices will be 
suppressed in the following work; 6 monomials are defined in appendix 2 together 
with some useful identities): 

where m = +, - refer to spin p +$ and p - 4 projections, 1 = 0, +, - refer to spin p ,  p + 1 
and p - 1 projections, a = +, - refer to T + 1 and T - 1 projections and k = 0, +, - 
refer to T, T + 2, T - 2 projections. All component fields are functions of x”. 

To determine the irreducibility or indecomposability of Q A ( x ” ,  e””) it is necessary 
to introduce appropriate field redefinitions for the component fields and examine their 
variations under the odd generators. To aid in this we recall that the algebra realised 
by ( 5 )  may be extended to include the generators s,, = 8,“ yielding the extended 
algebra 9. As we have noted, since the general superfield Q A ( x ” ,  e““) is still a 
representation of 9 it is expected to be reducible under 3. To find the irreducible 
representations of 3 contained in @ we proceed as follows. Given an irreducible 
representation of 3 with highest weight vector A = I(  p ,  q ) ,  T, Z), such that 

Q,+A= Q,+A= s e + A = O  
a basis from 3 may be obtained from the four vectors A, II+dBSk-A, n-~~Sfi-A, ( S d - ) 2 A  
by acting with monomials of Qd- and Om-. This suggests that a superfield Q A ( x ” ,  e”“), 
which carries a representation ( ( p ,  q ) ,  T, Z )  of X, contains four irreducible representa- 
tions of 3. This is indeed found to be the case, with A = I(p, q ) ,  T + 2 , 2 )  and con- 
sequently H+d’SO-A=l (p+; ,q ) ,  T + l , Z ) ,  nI-,’$-A=I(p-&q), T + l , Z )  and 
(s,-)’A = I( p ,  q ) ,  T, Z). Each of these multiplets contains sixteen fields with weights 
(relative to the central values) as shown in table 1 .  

To obtain the basis which renders the irreducible multiplets of 3 evident we proceed 
as follows. From the superfield it is apparent that the highest weight vector, A, is F+ 
since SQI_F+ = SQ,+F+ = 6gl+F+ = 0. The variations of F+ under Q,- and oy- are: 

SQ;F+ = -~yc~(4:++ Y;+) + 2 ( ~ ’ ’ ) / ( 8 ~ ? ; +  + 8 @ q ; + )  (12) 

t To be precise this term should read, considering for example the top component only, 

( 88) a bF,b = ( @)++ F++ + ( 88) -- F- - + ( 88)+- F+ - + ( 88) -+ E+,  

Thus we define F+ = F++, F- = F-- and Fo = F+- + E+,  
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Table 1. Weights and defining fields of the four irreducible multiplets of 9 contained in 
the supefield. The fields of the A, ,  A, and A4 mu!tip!ets are defined as proportional to 
nQ,-nQ,- acting on the highest weight vectors F+, Y+,+ and Y-&- respectively. The 
fields of the A,multiplet are defined as proportional to nQO+nQd+ acting on the lowest 
weight vector f-. 

A I 0, 0, +2 F+ 0, 0, -4 f- 4, 0, +1 ++&+ -;, 0, + 1  + - U +  

QUA 0, 4, +1 "='.+ 0, ;, -3 ;, f ,  0 P::+ -4,  ;, 0 Pi,'+ 
0, -4, +1 +-*+ 0, - f ,  -3 4, -4, 0 pi;+ -1 2, -1 2,  0 P,,+ 

Q U A  4, 0, +1 A+,+ ;, 0, -3 3+,- 1 ,  0, 0 d+d, -1, 0, 0 d;, 
4, 0, + 1  A-0+ -f. 0, -3 0, 0, 0 Fo 0, 0, 0 do,, 

On * Qp -A n 0, 0, 0 I+ 0, 0, -2 i- 4, 0, -1 $+,+ -4, 0, -1 $ - U +  

Qd * 0, * A, 0, 0, 0 6 0, 0, -2 I ;, 0, - 1  ++,- -4, 0, -1 + - U -  

on I Qd *A I I, 5, 0 *z+ f. ;, -2 $2 - .  1, f ,  -1 -1, 4, - 1  

5 ,  2, 0 *.z+ ;, -f, -2 w:;- 1, -4, -1 siu -1, -4, -1 ?,in 
2,  I, 0 *;,'+ -4, 1: -2 *;:- 0, 4, -1 (b_+uo 0, ;, -1 TO' dB0 

0 0  0, -4, -1 fo,& -I -1 0 *-- -1 -1 -2 *-- 0 -1 -1 +- 

0, f. - 1  0, ;, -1 Oi+, ;, 4, -2 !;U'- -;, f ,  -2 p-+ ; U -  

2, 2, -2 P;;- 0, -;, - 1  0, -4, - 1  j, -I, -2 pi;- -1 -1 

Qd + Q, + oa + A I 4, 0, - 1  3:+ 4, 0, -1 ?+*- 1, 0, -2 l+*, -1, 0, -2 i-U, 
;, 0, - 1  &,+ -;, 0, -1 n-+ 0, 0, -2 fo 0, 0, -2 i o , ,  

c ? ~ + Q ~ * Q ~ ~ Q , + A ~  0, 0, -2 d 0, 0, 0 A ;, 0, -3 $ + U -  -4, 0, -3 $-,- 

-_ 

I I  -++ 
I -1 

-1 I 

21 2,  &0+ 2,  2, &U- > 2 9  

I I  
Q, = Q& + Q, A ,  

-_ 

sav- F+ = $i(i-:+ + i- ;+) - g2(Y t+ + Y ;+). (13) 
From (12) and (13) we project spin q if and spin p * f states respectively, and define 
new fields proportional to those states. Thus, explictly, we have 

where 

= 4*a+- ( 2 / y P ) ( a * , ) o Q ( a , y ~ + + a , y ~ + )  

and 
h**+ =fin*,+ - g2Y**+ 

(see table 2 for notation). 
We now consider the variation of each of these - fields under Qy- and 0'- and 

define new - fields by projecting Lorentz eigenstates from the field variations as in 
(14) and (15). This procedure is simply repeated until a basis for the sixteen states of 
this multiplet has been generated. This basis is given in table 2 ( a ) .  

For the multiplet characterised by ($- )2A the judicious choice is to consider a 
lowest weight vector A = I(p,  q ) ,  T - 4 , Z )  such that Qm-A = gd-A = &-A = 0 and 
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obtain the remaining states of the multiplet by acting with monomials of QLI+ and od+ 
on A. From the superfield we find that f- is the field corresponding to A, since 
S,,-f- = 60, f- = Sgd f- = 0. By analogy with the F+ multiplet we now determine the 
variations off- under Q,+ and od+ and define new fields as proportional to the Lorentz 
eigenstates projected from these variations. Again by repeated application of this 
procedure we obtain a basis for the sixteen states of this multiplet. This basis is given 
in table 2 ( b ) .  

For the remaining two multiplets characterised by II*,'$-A, we see from the 
superfield that the highest weight states will be some linear combination of CL*&+ and 
"*&+ which is linearly independent of A*&+,. For simplicity we choose $*&+ = **&+ 

for which SS7+$*&+ = 0 and 6 ay+$:+ = Sg,+"*&+ = 2i(II*&)&*F+. Thus as will be seen 
presently, "*&+, are highest weight vectors, modulo coset elements, F,. Again by 
analogy with the F+ multiplet, the bases for the Y*&+ multiplets are obtained by acting 

Table 2. Basis for ( a )  the A, ( b )  the (S,_)2A, ( c )  the n+dBSfi-A and ( d )  the n-,'sfi 
multiplets. In these tables the following notation has been adopted: 

(VL = n f . @ ( ~ ~ ) , s  ( o ~ ) * , ,  =n*dB(up)B,  
1 A  

P' 
M$,gdy =- M,06*'+ E,&' + E ~ Q ~ , '  

where p i  = p and p-  = -p - 1, and 

G:,,q = n*,'G;d YZB. L e  
are similarly defined. See appendix 1 for further discusion of the properties of the spin 
p x i  projectors, U*,@, and the spin q x f  projectors, ntm@. 
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Table 2. (continued) 
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Table 2. (continued) 

with monomials of Qa+ and od+ on @*m+ and defining new fields as proportional to 
the Lorentz eigenstates projected from these variations. These bases are given in tables 
2 ( c )  and 2(d).  

This procedure effectively provides a basis transformation of the superfield com- 
ponents into irreducible multiplets of %. Such basis transformations may also be 
effected by constructing Casimirs of 3 which label different multiplets of 3 and finding 
functions of 8ua which form a complete set of eigenfunctions of this Casimir. Expand- 
ing the superfield in terms of these functions yields the appropriate basis directly as 
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the component fields. Jarvis (1976) has used this technique for the study of unitary, 
irreducible representations of the N = 1 super Poincari algebra. Bufton and Taylor 
(1983) define similar basis functions for the N-extended supersymmetry algebras. 

Given this new basis for the components of the superfield, the irreducibility of the 
multiplets we have generated can now be examined. It is found that the F+ and f- 
multiplets are invariant subspaces while the 9+&+ and 9-&+ multiplets are invariant 
as factor spaces. This behaviour is typified by the following examples: 

s Q,+G :+ = -yp r?l;&+ - yp r?lii+ - 4i(cw ) ,a,f+ 
6 - 6 = -2ifi'G;- - 2ip'Cj;- Qr - 

Table 3. Basis required to obtain the irreducible 'spin-reducing' multiplets. 
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4i 
YP 

s a,+ +ib = 2i(11- E J +  - - ( c w  *a (a,P,b+ + a,Pii+). 

As discussed in 0 1, it has been pointed out (Fayet 1976, 1979, Sohnius 1978, Rands 
and Taylor 1983) that if the constraint 

ZQ=+ = *i(cr*),aPpQd.* (16) 

Table 4. Variations of the fields of the A = F+ multiplet under $I,+ acd oi+._ These 
demonstrate the irreducibility, as a factor space, of the fields F+, a+&+, n-,+, D under 
the constraint P2 + p2p2 = 0. S,+ = SQy+ and S i +  = Sa,,, and we recall P2 = -a2, p2 = Z 
and b2 = 2. 
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is imposed, the number of fields in an irreducible representation is reduced from 24 
to 2*. This constraint implies that 

P 2 +  zz = 0. (17) 

In the present approach this reduction takes place via the imposition of only the weaker 
constraint (17) as described below. 

To observe this phenomenon we note the intimate connection between (16) and 
(17) and use this to introduce further field redefinitions, for the fields in each multiplet 
which are obtained from acting with Qa-, Qa-Qp_ and Qa-Ou- on the highest weight 
state of the multiplet or with Qa+, Qm+Qp+, Qa+Qa+ on the lowest weight state of the 
multiplet. These fields are constructed, up to a proportionality, from the - basis of 
table 2 by projecting Lorentz eigenstates either from 

( Q~ - + (i/ 2 ) ( r p  ) u ‘ ~ ,  Qa - ) ii (18) 
where 6 is the generic title given to the fields obtained from A,, Qa-A,  and Qa-A,  
with A, the highest weight state of a multiplet, or from, 

( Qa + - (i/ z ) ( 1 Qd + 1 (19) 
where 6 refers here to the fields obtained from A, Qa+A and Qa+A wth A the lowest 
weight state of a multiplet. These field redefinitions are given in table 3 and in this 
basis it is observed that the fields AI, Ou*Al and Qa*Op*A, (taking upper (lower) signs 
if A, is a lowest (highest) weight vector) are invariant as a factor space with the 
remaining fields of each multiplet decoupling when P 2  + Zz = 0. This is demonstrated 
for the F+ multiplet in table 4, which clearly shows that when condition (17) is imposed, 
an irreducible realisation of the S0(2)-extended super PoincarC algebra consists of 
four fields with O(3, 1) x U( 1) labels: 

{(Pl 4, T ) ,  ( P + f ,  4, T- l ) ,  ( P - f ,  4, T-11, (P, 4, T-2)).  

3. Conclusion 

In this paper new realisations of centrally extended N-supersymmetry have been 
constructed with 4N+[N/21 rather than 16N component fields. The emphasis has been 
on establishing the representations in a general framework for arbitrary external 
‘superspin’ labels, rather than on investigating the key questions of whether these 
afford dynamical models which avoid some of the usual difficulties occurring in 
quantised supersymmetric theories with central charges. Future studies along these 
lines will involve low-spin superfields of the general class treated here. 

Appendix 1. Projection operators for spin M x f  and spin M x 1 

Section 2 requires the use of spin M x i  and M x 1, with respect to SU(2) projection 
operators (cf Farmer and Jarvis 1983). The two-index basis for SU(2) is related to the 
spherical basis via 

(Al . l )  

where the generators are in a spin M matrix representation of SU(2). Where these 
act on superfield components such as $, or Gap, the question arises of projections 

A A 

Map = 2( M * 
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onto total spins ( M  *f) or (M, M * l ) ,  respectively. These are derived using the 
characteristic identity (quadratic or cubic respectively) satisfied by the generators in 
the reducible M x f  and M x 1 representations. 

The general construction of projection operators proceeds as follows. Consider 
some reducible representation of an algebra with Casimir operator, C, and eigenvalues 
cI, c2, .  . . , c,. Then there exists a complete set of projection operators 

* (C-c,) n i =  n - 
j = l  (Ci - c,) 
I f ]  

(A1.2) 

such that II, II, = 8,,II, and C y = ,  II, = 1. Each of the II, will extract a subspace with 
eigenvalue c, with respect to C. 

For M x i  we have for the Casimir (spin M indices are suppressed and indices 
a,  p, . . . are raised using the inverse metric E @ )  

(A. o ) , P  =(A+to)*,P-(A)28~-(fu)2,P (A1.3) 

where A and fu are spin M and spin f matrix representations respectively. The 
eigenvalues of ($2. 

( M  * f )  subspace: ( M  *f)(  M * f + 1) - M (  M + 1) -f(i+ 1) = M* (A1.4) 

on the reducible M x f  space are given by 

where M+ = M and M- = - M  - 1. The projection operators are therefore given by 

(A1.5) 

where (Al . l )  has been used. The following expressions can easily be derived from 
(A1.5) and are frequently used: 

n+iP = (fi/ -2M'89/2(2M'+ 1) 

= , + i P + , - i P  
Q a 

fiaB = 2M+,+I 2 P  +2M-H-f@ 
(2 

M ( 2 P f i p Y = 4 M ( M + 1 ) 8 ~ - 2 f i Q Y .  

For M x l  we have the Casimir 

(A. Z) :; = (A +f2)2$ - (A)3 :; - (fZ)'$ 

fZ$  = i( a a Y S p 8  + 8 , Y a p 8  + a p Y 8 a s  + S p Y a a S )  

where 

is the spin-1 matrix representation and 

1 $ = f (  8 , Y S P S  + SmS8,Y). 
The eigenvalues of (k * 2 )  $ on the reducible M x 1 space are given by 

( M  * 1) subspace: 

( M )  subspace: 

( M  * 1 ) ( M  * 1 + 1) - M( M + 1) - 1(1+ 1) = 2M' 

M ( M +  1) - M(M + 1)- 1(1+ 1) = -2. 

Thus the projection operators are 

fi i-(2M'+ 3 ) f +  4( M'+ 1)( M'+ 2)l  n ' l v a  = 
QP ( 8 ( M i + 1 ) ( 2 M * + l )  

n o v s  = f i + f + 4 M + M - l  
U P  ( 8 M + M -  

(A1.6) 

(A1.7) 

(Al.8) 

(Al.9) 

(A1.lO) 

( A l . l l )  

(Al.12) 

(Al.13) 

(Al .  14) 

(A1.15) 
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where we have used (A1.8) and the following definitions 

L:; =;(A:$+ s:A;+A;sg+ s;As,, 
Na, A y s  - -1 4( M : M ; + M : M ; + M ; M : + M ; M : ) .  

(Al .  6 )  

(Al .  7) 

From these definitions several useful identities can be derived which are necessary 

* A  

for the extraction of component field variations. Examples are: 

Appendix 2. 8 conventions and some useful identities 

Conventions: 

-&dB = -&ab & d B  = &ab = 

where & , @ = 1 , 2 ,  a , b = + , -  and ~ ‘ ~ = e + - = + l ,  

&a@&bi. = sg & Ob&bc = 8 
gaa - .  = &QBEbaBpb. 

= &dB&bagab 

Metric 7lFV = (-, +, +, +) 

crF = (1, U’) 5’’ = ( l , - u i )  Tr ~’’6” = -277’”. 

The monomial bases for gda expansions in 0 2 are given below together with some 

Calculus: 
useful identities associated with taking products and derivatives. 

-Bb - 8 08 b 
ad,@ - d (1 

ana( @)bC = Sobg,C + So=tiab 
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